Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.

Identifieur interne : 000093 ( Main/Exploration ); précédent : 000092; suivant : 000094

Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.

Auteurs : Noriyuki Nagahara [Japon]

Source :

RBID : pubmed:32481517

Abstract

Glutaredoxin (EC 1.15-1.21) is known as an oxidoreductase that protects cysteine residues within proteins against oxidative stress. Glutaredoxin catalyzes an electron transfer reaction that donates an electron to substrate proteins in the reducing system composed of glutaredoxin, glutathione, glutathione reductase, and nicotinamide-adenine dinucleotide phosphate (reduced form). 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) is a cysteine enzyme that catalyzes transsulfuration, and glutaredoxin activates 3-mercaptopyruvate sulfurtransferase in the reducing system. Interestingly, even when glutathione or glutathione reductase was absent, 3-mercaptopyruvate sulfurtransferase activity increased, probably because reduced glutaredoxin was partly present and able to activate 3-mercaptopyruvate sulfurtransferase until depletion. A study using mutant Escherichia coli glutaredoxin1 (Cys14 is the binding site of glutathione and was replaced with a Ser residue) confirmed these results. Some inconsistency was noted, and glutaredoxin with higher redox potential than either 3-mercaptopyruvate sulfurtransferase or glutathione reduced 3-mercaptopyruvate sulfurtransferase. However, electron-transfer enzymatically proceeded from glutaredoxin to 3-mercaptopyruvate sulfurtransferase.

DOI: 10.3390/biom10060826
PubMed: 32481517
PubMed Central: PMC7356906


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.</title>
<author>
<name sortKey="Nagahara, Noriyuki" sort="Nagahara, Noriyuki" uniqKey="Nagahara N" first="Noriyuki" last="Nagahara">Noriyuki Nagahara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo 113-8602, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo 113-8602</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32481517</idno>
<idno type="pmid">32481517</idno>
<idno type="doi">10.3390/biom10060826</idno>
<idno type="pmc">PMC7356906</idno>
<idno type="wicri:Area/Main/Corpus">000052</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000052</idno>
<idno type="wicri:Area/Main/Curation">000052</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000052</idno>
<idno type="wicri:Area/Main/Exploration">000052</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.</title>
<author>
<name sortKey="Nagahara, Noriyuki" sort="Nagahara, Noriyuki" uniqKey="Nagahara N" first="Noriyuki" last="Nagahara">Noriyuki Nagahara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo 113-8602, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo 113-8602</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomolecules</title>
<idno type="eISSN">2218-273X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin (EC 1.15-1.21) is known as an oxidoreductase that protects cysteine residues within proteins against oxidative stress. Glutaredoxin catalyzes an electron transfer reaction that donates an electron to substrate proteins in the reducing system composed of glutaredoxin, glutathione, glutathione reductase, and nicotinamide-adenine dinucleotide phosphate (reduced form). 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) is a cysteine enzyme that catalyzes transsulfuration, and glutaredoxin activates 3-mercaptopyruvate sulfurtransferase in the reducing system. Interestingly, even when glutathione or glutathione reductase was absent, 3-mercaptopyruvate sulfurtransferase activity increased, probably because reduced glutaredoxin was partly present and able to activate 3-mercaptopyruvate sulfurtransferase until depletion. A study using mutant
<i>Escherichia coli</i>
glutaredoxin1 (Cys
<sup>14</sup>
is the binding site of glutathione and was replaced with a Ser residue) confirmed these results. Some inconsistency was noted, and glutaredoxin with higher redox potential than either 3-mercaptopyruvate sulfurtransferase or glutathione reduced 3-mercaptopyruvate sulfurtransferase. However, electron-transfer enzymatically proceeded from glutaredoxin to 3-mercaptopyruvate sulfurtransferase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32481517</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2218-273X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Biomolecules</Title>
<ISOAbbreviation>Biomolecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E826</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/biom10060826</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin (EC 1.15-1.21) is known as an oxidoreductase that protects cysteine residues within proteins against oxidative stress. Glutaredoxin catalyzes an electron transfer reaction that donates an electron to substrate proteins in the reducing system composed of glutaredoxin, glutathione, glutathione reductase, and nicotinamide-adenine dinucleotide phosphate (reduced form). 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) is a cysteine enzyme that catalyzes transsulfuration, and glutaredoxin activates 3-mercaptopyruvate sulfurtransferase in the reducing system. Interestingly, even when glutathione or glutathione reductase was absent, 3-mercaptopyruvate sulfurtransferase activity increased, probably because reduced glutaredoxin was partly present and able to activate 3-mercaptopyruvate sulfurtransferase until depletion. A study using mutant
<i>Escherichia coli</i>
glutaredoxin1 (Cys
<sup>14</sup>
is the binding site of glutathione and was replaced with a Ser residue) confirmed these results. Some inconsistency was noted, and glutaredoxin with higher redox potential than either 3-mercaptopyruvate sulfurtransferase or glutathione reduced 3-mercaptopyruvate sulfurtransferase. However, electron-transfer enzymatically proceeded from glutaredoxin to 3-mercaptopyruvate sulfurtransferase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nagahara</LastName>
<ForeName>Noriyuki</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo 113-8602, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Biomolecules</MedlineTA>
<NlmUniqueID>101596414</NlmUniqueID>
<ISSNLinking>2218-273X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3-mercaptopyruvate sulfurtransferase</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">glutathione reductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32481517</ArticleId>
<ArticleId IdType="pii">biom10060826</ArticleId>
<ArticleId IdType="doi">10.3390/biom10060826</ArticleId>
<ArticleId IdType="pmc">PMC7356906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2015 Oct 06;5:14774</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26437775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Oct 14;280(41):34569-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(4):131-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25864468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 20;19(15):1749-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23646934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):20002-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2013 Nov 1;587(21):3548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24055470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 11;286(45):39379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2020 Jun;176:113833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32027885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 19;282(3):1561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Nov 1;271(44):27395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8910318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2016 Jul;55:13-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27163164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2020 Mar 17;22(1):49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32183900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1996 Feb 1;16(3):1066-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8558235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011 Dec 13;4(203):ra86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22169477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2006 Oct;209(Pt 20):4011-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17023595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 18;334(6058):986-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22096201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jul 7;270(27):16230-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1988 Apr;16(2):95-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3286320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1165-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1988 Dec;4(4):271-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3152490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Feb 5;496(2):648-653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29331374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 2008 Oct;88(10):1038-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18679378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2013 Nov;63(5):492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2006 May;55(5):1391-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16644696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Apr 10;459(3):488-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25747712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Nov 1;439(3):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21732914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 10;292(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Apr 19;433(4):401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10719-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20556885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2018 Feb;175(4):577-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29156095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Mar;18(3):557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Apr;11(4):703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18855522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2015;554:229-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2004 Feb;12(2):289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Oct;20(12):2118-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2007 Oct 1;76(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Aug 28;237(3):527-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9299397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2005 Dec 1;569(Pt 2):519-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2013 Jun;27(6):2451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23413359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nihon Yakurigaku Zasshi. 2016 Jan;147(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26753854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2009 Nov;146(5):623-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Nagahara, Noriyuki" sort="Nagahara, Noriyuki" uniqKey="Nagahara N" first="Noriyuki" last="Nagahara">Noriyuki Nagahara</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000093 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000093 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32481517
   |texte=   Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32481517" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020